Genetically Modified Mosquitos to Battle Zika Virus

Zika virus was all over the headlines this year and it became a real danger to anyone visiting South America. It is spread by mosquito bites and scientists are having a really hard time containing the virus in one place. Since the cure is nowhere in sight, researchers are hoping to find an alternative solution to this problem.

As a matter of fact, two scientists from Virginia Tech decided to tackle the issue head on and try to fight it from within by applying the latest technologies that involve genetically modifying mosquitos. Zuch Adolman and Zhijen Thu started developing a new method of fighting the virus by reducing the number of female mosquitos in one place because they are the ones who are spreading the virus.

So how do they plan to lower the number of female mosquitos? They came up with a new way to convert the female mosquitos to males by genetically modifying their code. The same scientists managed to make alterations to female mosquitos who were spreading malaria and sterilize them by using CRISPR-Cas9 gene modifying technology. They plan to do something similar with mosquitos who are the carriers of the Zika virus.

They have already identified the gene that is responsible for determining the gender of a mosquito and by applying the so called Nix gene to female mosquitos, they were successful in turning them into male mosquitos. That is particularly useful because female mosquitos are the ones who suck blood and transmit the virus via bite. By reducing the number of female mosquitos, a certain area will be less populated with these bugs and the possibility of getting bitten by a mosquito that is a Zika virus carrier will be significantly reduced.

If these two scientists manage to perfect this method of controlling the mosquito population, we will be able to battle various illnesses that are capable of spreading by mosquito bites. It is an excellent way to keep the mosquito population in check without wreaking havoc on the surrounding ecosystem.

CRISPR technology differs from the standard GMOs due to the fact it doesn’t introduce any foreign genes to the organisms that it is modifying. It became pretty well known in the scientific circles because it was successfully applied to mushrooms in order to prevent them from changing color from white to brown, prolonging their shelf life. So CRISPR improves and strengthens the already existing genes within a given species.

Surely, the team from Virginia Tech will need more time to test their findings in a controlled environment so the chances are we won’t be seeing the results of their hard work for the next couple of months. CRISPR gene modifying technology is still a new concept that requires more trials, but they already have a solid foundation because the same team of scientists worked on a similar project. If they do succeed, this method will reduce Zika virus carriers and save thousands of lives all around the globe. Mosquito borne diseases are really hard to fight so hopefully we’ll finally have a solution that will eliminate the threat.

Papaya and the Use of Genetic Viral Protection

    The Papaya plant may seem exotic to most mainlanders, but it is actually a very important fruit grown in the islands of Hawaii. While a large part of agricultural life on the island, Hawaiians faced a growing threat to their livelihood in the form of a devastating virus known as Papaya Ringspot Virus. Gmocompass describes the effects of prv in its article “Papayas” as stunting to the trees, causing them to take on an unhealthy, naked look as they are shorter than regular papaya trees and have less leaves covering their tops (2016).

       The process undertaken to protect the papaya trees is highly reminiscent of the way immunities are developed in humans through vaccinations. The article describes how certain types of viral proteins are inserted into the genes of the papayas which causes the papaya to fight back and develop a more powerful immune response to the viruses of that type. This results in the papaya plants getting total protection from the papaya ringspot virus, as they are better equipped to fight off the affliction with their genes. This development has allowed cultivators in Hawaii to plant the gm papayas in widespread locations and have them thrive even while prv is running rampant around their crops. There are actually pictures of natural and modified papaya trees planted parallel to each other, showing how the prv in the area is devastating the natural trees, while the modified papaya trees are as strong and healthy as if there were no viruses around whatsoever.

     The modified papayas first appeared in 1999 but have over time become the dominant form of papaya grown in Hawaii. The total cultivated space covers 3/4ths the entire papaya crop area with little sign of the adoption rates changing. As far as world acceptance, there is growing research and development into the process used to combat the papaya ringspot virus by other Asian countries who want to alter the crop themselves to combat the viral strains it would face being grown in their local areas. Both the United States and Canada have approved the consumption of GM papaya in their territories and serve as the largest customers of the crop.

      Meanwhile, the European Union has not approved the consumption or import of gm papaya, and because there have been no proposals to the EU for approval, it may be a while before their status gets reviewed. For now, it is illegal to import and market the modified papayas in any of the member states of the EU.

     While many genetic modifications of plants tend to increase resistance to herbicide and pesticide use, and maintain the aesthetic appeal of the crop by eliminating brown spots from bruising and cutting, the modification of papayas presents a unique appeal of modification that cannot as of yet be managed by anything else. There are no pills or medicines that can be given to plants that are already sick, and so genetic modifications of the plant so as to provide it a defense against debilitating pathogens have proved to be one of the best ways to preserve yields and growth of successful fields. However, for many people the dangers of genetic modification still outweighs the benefits of it, and even the rarity of overcoming the problem through other means still doesn’t provide enough of a justification to promote the acceptance and use of gm plants. For the papaya there are hopeful signs with the widespread adoption already seen in North America, but the approval of the EU on using the crop will be integral to seeing a more widespread acceptance of what the technology offers.

Source: Gmocompass. (2016). Papayas. Gmo-compass